Date of Issue: November 9, 2010

Affected Publication: API Recommended Practice 14B, Design, Installation, Repair and Operation of Subsurface Safety Valve Systems, Fifth Edition, October 2005

ERRATA

Page 26, Section E.1.7, replace the content of this section with the following:

E.1.7 Conduct leakage test and document results. For gas wells, flow rates can be computed from pressure build-up by the following formulae.

$$q = 2,84 \times 10^{3} \left(\Delta \frac{p}{Z} \right) \left(\frac{1}{t} \right) \left(\frac{V}{T} \right)$$
 (SI units)
$$q = 35,37 \left(\Delta \frac{p}{Z} \right) \left(\frac{1}{t} \right) \left(\frac{V}{T} \right)$$
 (USC units)

where

$$\left(\Delta \frac{p}{Z}\right)$$
 is the final pressure p_{f} divided by final Z_{f} minus initial pressure p_{i} divided by initial Z_{i} ;

- q is the leakage rate, m^3/min (SCF/min);
- *p* is the pressure, in MPa (psi);
- *Z* is the compressibility factor;
- *t* is the build-up time, in min, to reach a stabilized pressure;
- V is the volume of the tubing string above the SSSV, in m³, (ft³);
- *T* is the absolute temperature at the SSSV, in $^{\circ}C + 273$ ($^{\circ}F + 460$).

For low-pressure application, this formula may be simplified as follows:

$$q = \frac{9,68 \quad \Delta p \quad V}{t}$$
(SI units)
$$q = \frac{6,67 \times 10^{-2} \quad \Delta p \quad V}{t}$$
(USC units)